343 research outputs found

    Sub-movement organisation, pen pressure and muscle activity are modulated to precision demands in 2D tracking

    Get PDF
    The authors investigated how tracking performance, submovement organization, pen pressure and muscle activity in forearm and shoulder muscles were affected by target size in a 2D tracking task performed with a pen on a digitizer tablet. Twenty-six subjects took part in an experiment, in which either a small dot or a large dot was tracked, while it moved quasirandomly across a computer screen at a constant velocity of 2cm/s. The manipulation of precision level was successful, because mean distance to target and the standard deviation of this distance were significantly smaller with the small target than with the large target. With a small target, subjects trailed more behind the center of target and used submovements with larger amplitudes and of shorter duration, resulting in higher tracking accuracy. This change in submovement organization was accompanied by higher pen pressure, while at the same time muscle activity in the forearm extensors and flexors was increased, indicating higher endpoint stability. In conclusion, increased precision demands were accommodated by both a different organization of submovements and higher endpoint stability in a 2D tracking task performed with a pen on a digitizer tablet. © 2012 Copyright Taylor and Francis Group, LLC

    Analysis of ground reaction force and electromyographic activity of the gastrocnemius muscle during double support

    Get PDF
    O documento em anexo encontra-se na versão post-print (versão corrigida pelo editor).Purpose: Mechanisms associated with energy expenditure during gait have been extensively researched and studied. According to the double-inverted pendulum model energy expenditure is higher during double support, as lower limbs need to work to redirect the centre of mass velocity. This study looks into how the ground reaction force (GRF) of one limb affects the muscle activity required by the medial gastrocnemius (MG) of the contralateral limb during step-to-step transition. Methods: Thirty-five subjects were monitored as to the MG electromyographic activity (EMGa) of one limb and the GRF of the contralateral limb during double support. Results: After determination of the Pearson correlation coefficient (r), a moderate correlation was observed between the MG EMGa of the dominant leg and the vertical (Fz) and anteroposterior (Fy) components of GRF of the non-dominant leg (r=0.797, p<0.0001; r=-0.807, p<0.0001) and a weak and moderate correlation was observed between the MG EMGa of the non-dominant leg and the Fz and Fy of the dominant leg, respectively (r=0.442, p=0.018; r=-0.684 p<0.0001). Conclusions: The results obtained suggest that during double support, GRF is associated with the EMGa of the contralateral MG and that there is an increased dependence between the GRF of the non-dominant leg and the EMGa of the dominant MG

    Tibialis posterior in health and disease: a review of structure and function with specific reference to electromyographic studies

    Get PDF
    Tibialis posterior has a vital role during gait as the primary dynamic stabiliser of the medial longitudinal arch; however, the muscle and tendon are prone to dysfunction with several conditions. We present an overview of tibialis posterior muscle and tendon anatomy with images from cadaveric work on fresh frozen limbs and a review of current evidence that define normal and abnormal tibialis posterior muscle activation during gait. A video is available that demonstrates ultrasound guided intra-muscular insertion techniques for tibialis posterior electromyography
    • …
    corecore